IOWA STATE UNIVERSITY **Mechanical Engineering**

Sarah Hansen, Joshua Holtzleiter, Cassidy Carolan, and Sarah A. Bentil

Speckling Soft Materials Using an Airbrush Attachment for Digital Image Correlation Experiments

Objective

The objective of this research is to determine the feasibility of using an airbrush attachment as a means to speckle soft biological tissue.

Additionally, a MATLAB code will be created to analyze speckle patterns.

Background

Digital Image Correlation (DIC) experiments can be used to generate the deformation field of a specimen subjected to an applied load. This technique relies on the ability to produce a speckle pattern with the following characteristics:

• Isotropic

Random

(b)

- High contrast
- Consistent speckle size

(a)

- 50% coverage
- Various methods can be used to generate speckle patterns such as paints and dyes. This project will use spray paint and an airbrush with a 3D-printed attachment to apply speckles.

Preliminary experiments were conducted to establish testing parameters. The ideal airbrush attachment height for a porcine brain sample was also determined.

Figure 1: (a) Spray Paint Technique (b) and Airbrush Nozzle with Attachment

The airbrush attachment was designed for speckling purposes. It offers spray precision and speckle size control.

Acknowledgements: This project is financially supported by Roy J. Carver Charitable Trust under Grant No. 18-5021 and also in part by the lowa State University Foundation. References: [1] McCarty, Annastacia K.; Zhang, Ling; Hansen, Sarah; Jackson, William J.; Sarah A. Bentil." Viscoelastic properties of shock wave exposed brain tissue subjected to unconfined compression experiments." Journal of the Mechanical Behavior of Biomedical Materials, 100(2019), ScienceDirect, Web. 15 April 2020

Research Methods

Purpose: To compare speckle patterns created using spray paint and an airbrush with attachment.

Test Procedure:

- Core 25 mm porcine brain sample
- Apply speckle patterns
 - Airbrush; spray paint
- → Perform compression tests
 - 50 mm/min to achieve 20% strain
- \rightarrow Analyze images using a DIC software (i.e. VIC 3D)
- Compare results from airbrush vs spray paint test

Figure 2: Compression Test Setup [1]

Figure 3: (a) Airbrush Attachment and (b) Airbrush Speckle Pattern on Brain

Current Focus and Results

A MATLAB code was developed to **quantitatively** analyze the speckle patterns produced from using the spray paint or the airbrush attachment.

The MATLAB code provides researchers with data that can be interpreted to determine the quality of a speckle pattern.

Figure 4: (left) Original Image containing Speckles (black) was analyzed using MATLAB to (right) Identify the Speckles' Centroids depicted by the Asterisks

The code displays the following characteristics:

- Total number of speckles
- Speckle centroid location
- Average speckle area

Future Work

Next Steps:

- Conduct compression experiments of brain tissue
- Analyze speckle patterns with MATLAB
- Verify method of using an airbrush attachment
- Compare deformation fields from airbrush and spray paint methods, using the percent difference

speckling technique will determine the The repeatability of speckle pattern created; this work will benefit researchers using DIC to characterize the mechanical properties of soft materials.

- Density percentage
- Randomness value